If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-4976=0
a = 1; b = 0; c = -4976;
Δ = b2-4ac
Δ = 02-4·1·(-4976)
Δ = 19904
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{19904}=\sqrt{64*311}=\sqrt{64}*\sqrt{311}=8\sqrt{311}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{311}}{2*1}=\frac{0-8\sqrt{311}}{2} =-\frac{8\sqrt{311}}{2} =-4\sqrt{311} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{311}}{2*1}=\frac{0+8\sqrt{311}}{2} =\frac{8\sqrt{311}}{2} =4\sqrt{311} $
| 1/1/2x-5=7 | | 2x+2=10* | | 18+4(2+3x)=28 | | 9x-28=81 | | 4b-2=10-2b | | (x-5)^2-12.25=0 | | x/4=-20/26 | | 24=4+t | | 17x+40=21 | | 1=4x+21 | | 12(x+3)-4(2x=9)+4x | | 6b-8=3b+2 | | 150m-100m+48500=51000-200m | | 3/2x-8/3=-29/12 | | 0.7x+0.2=0.4x-1 | | 3(5x-4)-8x=7x=12 | | 43=y−16 | | -2(x-1)=x+8 | | 2(4-6x)=-16 | | 700+x(20)=4300 | | 2(12-y)=23-(2y-1 | | 6x3-11x2-3x+2=0 | | -7.8+3.3y=2.4 | | X=-4+y=3 | | -6.2x+12.4=-7.55-2x | | x+11=-x+1 | | 7x=10=7x=10 | | 4x+13=109 | | 4x=4x=4 | | x+2x=13=109 | | t=3.2+-0.7t | | 3(2x-1)-2x-2=7 |